MATH 521A: Abstract Algebra

Preparation for Final Exam
R, S are rings, not necessarily commutative or with identity F is a field.

1. Carefully define the terms gcd, ring, integral domain, field, $F[x], \mathbb{Z}_{n}$, irreducible element, prime element, ideal, maximal ideal, prime ideal.
2. Carefully the state the following theorems: division algorithm in \mathbb{Z}, division algorithm in $F[x]$, fundamental theorem of arithmetic, remainder theorem, Gauss's lemma, rational root test, Eisenstein's criterion, first isomorphism theorem.
3. Let $a, b, m, n \in \mathbb{N}$, with $\operatorname{gcd}(m, n)=1$. Prove that the modular system $\{x \equiv a(\bmod m), x \equiv b(\bmod n)\}$ has a solution, and this solution is unique modulo $m n$.
4. Prove the division algorithm in \mathbb{Z}.
5. Let $a, b, m \in \mathbb{Z}$. Prove that $m \operatorname{gcd}(a, b)=\operatorname{gcd}(m a, m b)$ if and only if (a) $m>0$; and (b) a, b are not both 0 .
6. Let $S \subseteq R$. Prove that S is a subring if and only if (a) $S \neq \emptyset$; and (b) for all $x, y \in S, x y \in S$ and $x-y \in S$.
7. Let $a \in R$. Prove that $a R=\{a r: r \in R\}$ is a subring of R.
8. We call $r \in R$ idempotent if $r^{2}=r$. Suppose R has 1 , and let $x \in R$ be idempotent. Prove that $1-x$ is idempotent.
9. Suppose R is a finite integral domain. Prove that R is a field.
10. Let $\phi: F \rightarrow R$ be a ring homomorphism. Prove that either (a) for all $x \in F, \phi(x)=0$; or (b) ϕ is injective.
11. Let $\phi: R \rightarrow S$ be a ring isomorphism. Prove that R has an identity if and only if S has an identity.
12. Let $f(x)=x^{3}-6 x^{2}+x+4, g(x)=x^{5}-6 x+1$, both in $\mathbb{Q}[x]$. Use the extended Euclidean algorithm to find $\operatorname{gcd}(f, g)$ and to find polynomials s, t such that $\operatorname{gcd}(f, g)=f s+g t$.
13. Define $R \subseteq \mathbb{Z}_{2}[x]$ via $R=\{f(x): f(0) f(1)=0\}$. Prove or disprove that R is a subring.
14. Let $a, b \in F$. Prove that $\operatorname{gcd}(x+a, x+b)=1$ in $F[x]$ if and only if $a \neq b$.
15. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$. Suppose there is a prime p where $p\left|a_{1}, p\right| a_{2}, \ldots, p \mid a_{n}$ but $p \nmid a_{0}$ and $p^{2} \nmid a_{n}$. Prove that $f(x)$ is irreducible in $\mathbb{Q}[x]$.
16. Set $f(x)=x^{2}+2 \in \mathbb{Z}_{4}[x]$. Prove that $f(x)$ is irreducible, and not prime.
17. Let $p(x) \in F[x]$. Prove that $p(x)$ is irreducible if and only if the ideal $(p(x))$ is maximal in $F[x]$.
18. Prove that (n) is a prime ideal of \mathbb{Z}, if and only if n is either prime or zero.
19. Construct a field with nine elements, and list all the elements.
20. Let $f(x), p(x) \in F[x]$, with $\operatorname{gcd}(f(x), p(x))=1$. Prove that there is some $g(x) \in F[x]$ such that $f(x) g(x) \equiv 1(\bmod p(x))$.
21. Find the equivalence classes and rules for addition and multiplication in $\mathbb{Q}[x] /\left(x^{2}-1\right)$. Find all the units and zero divisors.
22. Set $I=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}: a_{0}+a_{1}+\cdots+a_{n}=0\right\}$. Prove that this is an ideal of $F[x]$, and principal.
23. Let $R=\mathbb{Z}[x], I=(x-1)$. Prove that I is prime, and not maximal.
24. Let $R=\mathbb{Z}[x], p$ prime. Let $I=\left\{p a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{Z}\right\}$. Prove that I is an ideal, and maximal.
